Shaped lasers used to slash manufacturing time for fibre-optic medical devices

The time it takes to manufacture fibre-optic medical devices used in healthcare has been dramatically slashed, Heriot-Watt University has announced.

A previously developed suite of highly innovative thin and flexible optical devices has been demonstrated for the future diagnosis and treatment of a range of conditions. The devices, however, require complex systems of micro-optic lenses, mirrors, and prisms, like a microscope, at their end (distal-end microsystems). These systems have the potential to transform the delivery of procedures like key-hole surgeries and biopsies.

However, manufacturing the complex end of each device has, up to now, taken hours per device, increasing costs, and limiting up-take.

A new technique developed by Heriot-Watt University has dramatically reduced manufacturing time for the optical systems from hours to just a few minutes using laser beam shaping techniques. The findings were published in peer-reviewed journal Optics Express.

The team also developed new micro-optic systems for applications in minimally invasive precision microsurgery using ultrafast laser pulses delivered by specialist hollow core fibres developed by the University of Bath.

The results were unveiled as part of a wider report into the University’s five-year £1.3 million 4MD Platform grant, funded by the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research & innovation.

Professor Robert Thomson from Heriot-Watt University led the project team that has developed the new manufacturing technique. 

He explained: “Medical device technologies are vital for the detection and treatment of a huge number of diseases and healthcare challenges. Increasingly, micro-devices are being developed for minimally invasive measurement and therapy, for example in cancer detection and precision laser surgery. 

“However, up to now, they have been very expensive to produce. Coming up with a medical device innovation is exciting but if it can’t be made commercially, it won’t be used in hospitals and clinics. To encourage take-up of state-of-the-art devices, it is vital to provide low-cost and highly repeatable manufacturing solutions.

“We’ve achieved a major manufacturing advance using laser beam shaping techniques. This gives us control of the shape of the focal volume, and therefore more efficient use of the available laser pulse energy during manufacture. We’ve overcome a major drawback of using ultrafast laser inscription techniques for manufacturing distal-end-microsystems for fibre-optic medical instruments.”

Professor Duncan Hand from Heriot-Watt University was principal investigator across the 4MD Platform grant which delivered this and 18 other individual projects, supported by a range of medical and industrial partners. 

Projects included a new technique to sterilise ambulances using ultraviolet light, an ultrasound needle to better position epidurals during labour and a proof-of-concept study using lasers to overcome existing limitations of conventional neurosurgery for cleaning brain cancer margins.

Published: 23.08.2022
surgery
connecting surgeons. shaping the future
AboutContact
Register
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram
Send this to a friend